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Molecular-dynamics simulations were performed for two opposing flat surfaces sparsely grafted with rigid
polyelectrolyte chains whose lengths are smaller than their persistence lengths. The resulting force-distance
dependence was analyzed theoretically in terms of two separate physical mechanisms: the pressure arising
from osmotically active counterions trapped within the brush and the work required to bend the brush chains
under confinement, which can be accurately characterized by a ground-state theory of rigid polymer buckling.
These contributions are of the same magnitude and should be distinguishable in experiments of double-
stranded DNA brushes.
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Flexible rodlike polymers such as viral segments �1,2�,
actin �3�, DNA �4,5�, magnetic filaments �6�, and carbon
nanotubes �7� have emerged as novel physical systems that
can be engaged in a variety of ways to influence material
properties in different physical applications. Of particular
importance to soft matter science is the possibility of grafting
them on planar or curved, rigid or flexible surfaces, creating
thereby new kinds of colloidal particles. Flexible filaments
can be regarded as nanosprings �8� and the effects of their
rigidity in inducing buckling transitions either of the chains
themselves �9,10� or of the flexible surface on which they are
grafted �3� have been quantitatively analyzed. An alternative
possibility to induce rigidity on otherwise flexible grafted
polymers is by electrical charge. The resulting polyelectro-
lyte �PE� brushes have recently garnered a great deal of at-
tention �11–13�. Most of this attention has been paid to single
brushes, e.g., in studies of the transition of a brush in the
“osmotic” regime �14,15�, in which the osmotic stress of
trapped counterions within a brush swells the brush chains,
to a collapsed state with added salt �16–18�. Considerable
work has also been initiated to explore interactions between
brushes �19–23�. The combined effect of intrinsic rigidity
and charge, however, has received little attention to date. In
the very recent work of Huang et al. �2�, charged M13 vi-
ruses were grafted on colloidal particles and the ensuing
forces were analyzed only at intersurface distances for which
the chain compression contribution does not set in, employ-
ing a theory of the osmotic pressure of the counterions �23�.

Recently, experiments studying the interactions between
brushes sparsely grafted with rigid PEs, such as DNA, have
been carried out �4�. Unlike their densely grafted counter-
parts, interdigitation of chains on opposite brushes may oc-
cur. This interpenetration leads to a force-distance depen-
dence for sparsely grafted brushes that is quite different from
the predictions for densely grafted brushes in the osmotic
regime. By direct comparison with laser-tweezer force mea-
surements, it has been argued �5� that the counterion-entropy
contribution �23� is not sufficient to describe the interbrush
forces and that a compression contribution from the chains
being pressed on the surface of the opposite colloid is
present. The latter has been modeled by the force arising
from the uniaxial compression of a charged, stiff PE rod,
giving rise to excellent agreement with experimental results
�5�. Notwithstanding this fact, a more realistic description of

the conformational changes in a stiff PE chain should entail
the possibility of bending of the same upon approach toward
a planar hard surface. In this Rapid Communication we pur-
sue precisely this goal. We present simulation results of
brushes sparsely grafted with rigid, short PE chains and de-
velop an accurate theory for their interactions. Being that the
chains are shorter than their natural persistence lengths, we
find that, besides a contribution to the force of osmotically
active counterions trapped in the brushes, we must include
an additional force term arising from the finite rigidity of the
chains and we quantitatively describe both by means of ac-
curate theoretical approaches.

Molecular-dynamics simulations �see Ref. �24� for de-
tails� were performed for flat brushes each consisting of 42
PE chains of N monomers of unit charge, corresponding
monovalent counterions to neutralize the brushes, and no
added salt. Chain monomers and counterions were modeled
as beads with an effective steric radius a=11 Å, the approxi-
mate radius of DNA used in cell model calculations to accu-
rately fit osmotic pressure experiments of columnar DNA
assemblies �25,26�, for chain-counterion interactions. Adja-
cent chain monomers were bonded by a harmonic potential
with an equilibrium length of b=3.4 Å and stiffness was
provided by a harmonic angle potential with a bending force
constant used in previous studies �24,27� that gives the ap-
proximate persistence length of DNA at low ionic strength,
�500–1000 Å �28�. Note that electrostatic repulsion among
monomers on the same chain also contributes to the persis-
tence length, and therefore the latter depends very much on
its ionic environment �28–30�. Furthermore, the same stiff-
ness was accorded to the grafting points, effectively clamp-
ing the chains perpendicular to the grafting surface, which
resulted in chains at the edge of the brush having similar or
parallel conformations to those in the center.

Chains were periodically grafted at one end to each op-
posing, impenetrable wall in the simulation cell with grafting
points on opposite walls staggered by half the lattice spacing.
The grafting density � corresponded to an average nearest-
neighbor distance equal to an N=50 monomer chain length
L. The total cross-sectional area �Lx�Ly, with the brush nor-
mal to the z direction� of the simulation box was greater, by
a factor of 4 or more, than the grafting area, which allowed
for a fraction of the counterions to be free of the brushes.
The total accessible volume V �Lx�Ly �D, with Lx=Ly
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=�V /D� was kept constant as the distance D between the
brush walls was varied, hence guaranteeing that the average
counterion density remained the same across simulations.
With this geometry, we are better able to imitate experiments
of finite brushes in a dilute background solution as well as to
probe how the counterion population within the brush varied
with brush separation. Lz of the full simulation box was cho-
sen to be much larger than ��3�� D and a correction term
for this slab geometry was included �31� to eliminate the
effect of interactions between periodic replicants in the z
direction. Two trials were carried out for chains composed of
either N=30 �L=102 Å� or N=50 �L=170 Å� monomers
with the same accessible system volume, V=12�105 nm3,
for each.

The calculated pressure on each brush consisted of the
force on the brush wall due to counterions, �osm, as well as
the force at the grafting points of the chains and that of the
buckled chains of the opposite brush on the grafting wall,
�chain, giving a total pressure �=�osm+�chain. Being that
sparse brushes of stiff chains are completely interpenetrating
�21�, as opposed to studies of brushes with flexible PEs
and/or with large grafting densities, this latter contribution is
realized when chains make contact with the opposite wall,
i.e., when D�L.

This component to the total force may be determined by
calculating the bending energy of a buckled inextensible
chain �32,33�, Vbend= �B /2��0

L�dt�s� /ds�2ds, where B is the
bending rigidity modulus and t�s� is the tangent vector to the
contour at contour length s. This must be minimized subject
to the condition that the ungrafted end of the chain lies at the
opposite wall without penetrating it, that is �0

Lt�s� ·zds=D
where z is the unit vector perpendicular to the brush wall.
The chain conformation minimizing the bending energy is
found by solving the corresponding Euler-Lagrange equa-
tions, which are given in Refs. �33,34�. However, in contrast
to the very similar solutions with the boundary conditions
of a chain clamped at both ends �33,34�, we determine solu-
tions for a chain that is free at its ungrafted end. The solution
takes different forms about a critical distance �34� D� /L
=2E�1 /2� /K�1 /2�−1=0.4569. . . �where K�m� and E�m� are
the complete elliptic integrals of the first and second kinds,
respectively�: �i� when D�D�, the chain’s curvature is finite
throughout its contour length becoming zero only at its
free end; and �ii� when D�D�, a segment of length
�1−D /D��L at the end of the chain lies flat against the op-
posing surface. For the latter, the shape of the chain up to
this flat segment has the same form, with the contour loca-
tion s rescaled by D /D�, as the chain conformation when
D=D�.

Once the chain conformation is known, the bending en-
ergy and the force between the brushes due to bending of the
chains may be found:

Fbend�D� = �
�

2

B

L

D�

D2 if D � D�

K2�m�
B

L2 if D� � D � L ,	 �1�

where m is a solution to 2E�m� /K�m�−1=D /L. At D=L,
when the chains first contact the opposite wall, the force

jumps abruptly from zero to a finite value, K2�0�B /L2

= �� /2�2B /L2. The chain contribution to the total pressure is
thus given by �chain=�Fbend.

For densely grafted brushes in the osmotic regime
�13,14,35�, nearly all counterions are confined within the
brushes. If the density of the counterions at a brush wall
corresponds to a fraction f of the average density of counte-
rions within the entire brush, the osmotic pressure at separa-
tions D�2L is given by �22�

�osm
ideal = fkBTN��D�1 − ���−1, �2�

where the term in the brackets is a correction for the ex-
cluded volume fraction �=�a2L� /D of the chains within the
brush. Assuming that the counterion density within the brush
was uniform, f would be unity. This assumption, however, is
not valid for the sparse brushes we consider. For a finite
charged line, the electrostatic potential near the center of the
line is nearly twice that near its end, and thus, the counterion
population is much less at the grafting wall than in the center
of the brush. This argument can be recast in terms of coun-
terion condensation on the strong �having a Manning param-
eter ��1 �36�� PE chains. Although any finite PE would lose
all its counterions under infinite dilution, studies �37–41�
demonstrate counterion condensation on finite chains in the
semidilute regime of our brushes. Furthermore, it was shown
that fewer counterions condense at the ends of the chain than
at the center �38�, so for simplicity, based on this study, we
approximate that the counterion density at the brush wall is
half its average value, f =1 /2.

We have also determined the osmotic pressure contribu-
tion by mapping the sparse brush problem onto a two-
dimensional �2D� cell model for infinite charged rods �42,43�
�see Fig. 1�. Here we assume that the pressure at the cylin-
drical cell boundary of the PE chain is equivalent to the
pressure at the brush walls. Indeed, Antypov and Holm �41�
demonstrated that for the finite cylindrical cell which pro-
vides the lowest free energy in a system of rodlike PEs and
fully neutralizing counterions, the average counterion den-

FIG. 1. �Color online� A schematic diagram of the �a� brushes
and �b� their mapping onto a 2D cell model at two different brush
separations. As the separation between the brushes is reduced, the
corresponding cells are shrunk, Rs2

/�D2=Rs1
/�D1, in the 2D map-

ping to mimic the correct chain density of the brushes of the origi-
nal 3D system.
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sity, and hence the osmotic pressure, at the lateral cell wall is
the same as that at the ends of the cell. Although our system
is quite different from theirs �41�, and we employ a cylindri-
cal cell with a geometry fixed by the distance between the
brush walls and by the grafting density, we find that such a
treatment yields another means by which to obtain the os-
motic pressure contribution while also providing a quantita-
tive comparison of the counterion distributions about the
brush chains.

For our problem, we assume the chains in each cell are
fully neutralized by the counterions in our closed �periodic�
system, and so the electrostatic interaction between brushes
is quite weak before the chains begin to interdigitate at D
=2L. Hence we solve the nonlinear Poisson-Boltzmann
equation

	�2
�r� = − 4�enC+ exp�− �e
�r�� , �3�

where �= �kBT�−1, with the boundary conditions

a��
/�r�
r=a = 2e/�	b� and Rs��
/�r�
r=Rs
= 0, �4�

which has been solved analytically in previous works �see,
e.g., Refs. �25,35,42,43�� and which may be modified if full
neutralization of the line charges is not assumed �40�. Here r
is the radial coordinate, e is the unit charge, nC+ is the aver-
age counterion concentration, a is the effective radius of the
chain, and, again, b is the distance between unit charges
along the chain. The original brush system is then translated
into this 2D formulation by scaling the radius of the cell
boundary in the cell model with the distance between the
walls of the original three-dimensional �3D� brush system,
Rs=�D / �2�L�� �Fig. 1�.

Comparisons of the counterion concentration about a
chain between this implementation of the cell model and
simulations for different brush separations are shown in Fig.
2. Although the cell model is a mean-field theory and the
change in brush separation is modeled solely by changing the
location of the cell boundary, the larger amplitude at the
chain surface and the initial decay near the chains of the
counterion density with decreasing D is well described by
the cell model without taking into account the counterion
correlation effects underlying counterion condensation at the
surface of the strong PE chains. Via the argument that the
average counterion distribution at the cell boundary is the
same at the end of the cell �the brush wall here� �41�, the cell
model predicts an osmotic pressure between the brushes of
�osm

cell =nC+kBT exp�−�e
�Rs��.
Results of the simulation and theory are presented in Fig.

3 for the two different chain lengths. As predicted by the
theory for bending of stiff chains, the pressure jumps at the
location D=L. We find that a slightly larger bending rigidity
modulus B is required to fit the chain contribution to the
pressure of the brushes with smaller �N=30 monomer�
chains, resulting from an effective larger persistence length
for these shorter brushes associated with the discreteness of
the chains. The force resulting from chain bending consti-
tutes a larger share of the total force for shorter chains as
well.

For the osmotic counterion contribution, we assumed that
the number of counterions within the brush remained con-
stant as D was varied. This assumption, confirmed by the
simulations, is based on theory demonstrating that the os-
motic coefficient, and hence the net charge, of a brush was
invariant to a change in the cell size enclosing the brush �23�.
Again, the counterion density at the brush wall, providing the
osmotic pressure, is less than the average density within the
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FIG. 2. �Color online� The distribution of the counterions’ short-
est distance to a �bent� brush chain averaged over the entire length
of a chain. Simulation results are shown for the N=50 monomer
chain at brush separations of D /L=0.44 �circles�, D /L=0.88
�squares�, and D /L=1.76 �crosses�. The corresponding cell model
calculations of the radially dependent counterion densities �lines�
for these separations, where Rs=�D / �2�L��, are also illustrated.
Inset: the radial distribution of the counterions about only the
grafted ends of the chains for N=30 �circles� and N=50 �squares�
for D /L=0.44, demonstrating the larger population of the counteri-
ons at the brush wall for the shorter chains.
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FIG. 3. �Color online� Simulation and theory results for the
pressure between brushes as a function of their separation for the
N=50 �N=30, inset� monomer chains. The total pressure �� sym-
bols�, relative to their values at D=2L, and the contribution only
due to the chains �circles� for the simulations are shown. The bend-
ing contribution, Eq. �1�, is given by the dashed �blue� line with
B=3.0�10−28 J m �B=3.4�10−28 J m, inset�. The sum of this
contribution and that due to the counterions is shown by the dash-
dot �red� ��chain+�osm

ideal� and solid �black� ��chain+�osm
cell � lines. The

dotted vertical line indicates where the bending behavior changes
�D� /L�.
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brush, and so f in Eq. �2� was approximated as being 1/2. In
the cell model, the chain’s charge in the interior of the brush
is judged to be neutralized by the counterions, which has also
been ascertained from simulations, and so no fitting param-
eters are required. For the shorter chains at close confine-
ment, the infinite chain �2D� approximation of the cell model
underestimates the counterion contribution to the overall
pressure since finite-size effects for the smaller chains be-
come more important. Here, proportionately larger sections
of the ungrafted ends of a brush are compressed against the
opposite brush wall, increasing the average counterion den-
sity, and hence osmotic pressure, at the wall �see inset of Fig.
2�.

In summary, simulations and a theoretical treatment have
been completed for sparse brushes of short PE chains with
finite rigidity. Unlike densely grafted brushes of flexible PEs,
the force between the brushes investigated here not only
arises from the osmotic stress of compressed counterions

within the brush but also results from the work required to
bend the rigid chains. The contribution to the total force
arising from chain bending is of the same order as this os-
motic term and may even dominate it at increased confine-
ment as the bending contribution scales as 1 /D2. Interest-
ingly enough, this is the same law as the simple compression
mechanism put forward in Ref. �5�, demonstrating the insen-
sitivity on the precise form of chain deformation. Our analy-
sis offers a unique quantitative description of the interactions
between PE brushes with rigid chains that may be exploited,
e.g., for statistical mechanical studies of multibrush systems
and/or for their many physical applications, such as colloidal
stabilization and lubrication, as well as control of electrical
conductivity of nanoparticle films �44�.
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